Modular adjacency algebras of Grassmann graphs
نویسندگان
چکیده
منابع مشابه
Modular adjacency algebras of Grassmann graphs
The adjacency algebra of an association scheme is defined over an arbitrary field. In general, it is always semisimple over a field of characteristic zero but not always semisimple over a field of positive characteristic. The structures of adjacency algebras over fields of positive characteristic have not been sufficiently studied. In this paper, we consider the structures of adjacency algebras...
متن کاملModular Adjacency Algebras of Hamming Schemes
To each association scheme G and to each field R, there is associated naturally an associative algebra, the so-called adjacency algebra RG of G over R. It is well-known that RG is semisimple if R has characteristic 0. However, little is known if R has positive characteristic. In the present paper, we focus on this case. We describe the algebra RG if G is a Hamming scheme (and R a field of posit...
متن کاملReciprocal Degree Distance of Grassmann Graphs
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملreciprocal degree distance of grassmann graphs
recently, hua et al. defined a new topological index based on degrees and inverse ofdistances between all pairs of vertices. they named this new graph invariant as reciprocaldegree distance as 1{ , } ( ) ( ( ) ( ))[ ( , )]rdd(g) = u v v g d u d v d u v , where the d(u,v) denotesthe distance between vertices u and v. in this paper, we compute this topological index forgrassmann graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2015
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.10.013